VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (C. S. E. : CBCS) VI-Semester Main Examinations, January-2021

Automata, Languages and Computation
Time: $\mathbf{2}$ hours
Max. Marks: 60
Note: Answer any NINE questions from Part-A and any THREE from Part-B
Part-A ($9 \times 2=18$ Marks)

14．a）The following grammar generates prefix expressions $\mathrm{E}->+\mathrm{EE}|* \mathrm{EE}|-\mathrm{EE}|\mathrm{x}| \mathrm{y}$
Find the leftmost and rightmost derivations for the string＋＊－xyxy
b）Show that $L=\left\{a^{i} b^{j} \mid j=i^{2}\right\}$ is not a regular language．
15．a）Find if the given grammar is finite or infinite：$S \rightarrow A B, A \rightarrow$ $B C|a, B \rightarrow C C| b, C \rightarrow a$
b）Design Push Down Automata for the language $L=\left\{a^{2 n} b^{n} \mid n \geq 1\right\}$ ．
16．a）Design a Turing machine to recognize the language $L=\left\{a^{n} c b^{n} \mid n \geq 1\right\}$ ．
b）Write about context sensitive language and its relation with Linear bounded automata．
17．a）What are undecidable problems？Explain why the PCP problem is considered undecidable．
b）Write short notes on NP－complete and NP－hard problems．
18．a）Convert the following regular expression to NFA with epsilon transitions $011(0+1)^{*}$
b）What is meant by ambiguity？How we can test the ambiguity of grammar？
19．Answer any two of the following：
a）Find a grammar in CNF equivalent to the grammar $S \rightarrow$ $b A|a B, A \rightarrow b A A| a S|a, B \rightarrow a B B| b S \mid b$
b）Explain the Halting problem of a Turing machine．
c）Explain the basic concept of the Universal Turing Machine．
M：Marks；L：Bloom＇s Taxonomy Level；CO：Course Outcome；PO：Programme Outcome

S．No．	Criteria for questions	Percentage
1	Fundamental knowledge（Level－$\& 2$ ）	55
2	Knowledge on application and analysis（Level－3 \＆4）	45
3	＊Critical thinking and ability to design（Level－5 \＆6） （＊wherever applicable）	0

