Code No.: 16215

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (C. S. E.: CBCS) VI-Semester Main Examinations, January-2021

Automata, Languages and Computation

Time: 2 hours

Max. Marks: 60

Note: Answer any NINE questions from Part-A and any THREE from Part-B

 $Part-A (9 \times 2 = 18 Marks)$

Q. No.	Sten	of the question		M	L	CO	PO
1.	Write the regular expression	for the following language:	7	2	2	1	1,2
		's where every string end w	1				
2.	Give DFA accepting the set of all strings containing 110 as a substring, over the alphabet {0, 1}.		2	2	1	1,2	
3.	List any four closure proper	ies of regular languages.		2	1	2	1
4.	Define a parse tree and give	Define a parse tree and give an example.		2	1	2	1
5.	Write the definition of pushdown automata (PDA).		2	1	3	1	
6.	Eliminate useless symbols fi	rom the following grammar.	ratalpant-17	2	2	3	1,2
	S-> AB C A-> aA b						
	B-> bB a		will (upo)				
	C-> aC						
7.	What is context sensitive grammar? How is it different from CFG?		2	2	4	1	
8.	When do you say that the Turing machine accepts a string?		2	2	4	. 1	
9.	Write any two examples of an undecidable problem.		2	2	5	1	
10.	State the Instantaneous description of the Turning machine.		2	2	5	1	
11.	Design NFA for the language defined over $\Sigma = \{0,1\}$ where strings begin with 0 and end with 1.		2	3	1	1,2	
12.	Define the language for the	following Context-Free Gra	mmar.	2	2	2	1,2
	$S \rightarrow 0 S 1 \mid 0 1$						
	Part-B	$(3 \times 14 = 42 Marks)$	Sign to sehow				
13. a)	Design an Automaton whic program.	h identifies the identifiers in	a C language	7	3	1	1,2
b)	Convert the following DFA to a Regular expression			7	3	1	1,2
	0 1						
	->*p	S	р				
	q	p	S				
	r	r	q r				

14. a)	The following grammar generates prefix expressions E -> +EE * EE -EE x y	7	3	2	1,2
	Find the leftmost and rightmost derivations for the string +*-xyxy				
b)	Show that $L = \{a^i b^j j = i^2\}$ is not a regular language.	7	3	2	1,2
15. a)	Find if the given grammar is finite or infinite: $S \to AB, A \to BC a, B \to CC b, C \to a$	7	3	3	1,2
b)	Design Push Down Automata for the language $L = \{a^{2n}b^n n \ge 1\}$.	7	4	3	1,2
16. a)	Design a Turing machine to recognize the language $L = \{a^n c b^n \mid n \ge 1\}.$	10	4	4	1,2
b)	Write about context sensitive language and its relation with Linear bounded automata.	4	2	4	1
17. a)	What are undecidable problems? Explain why the PCP problem is considered undecidable.	7	2	5	1
b)	Write short notes on NP-complete and NP-hard problems.	7	2	5	1
18. a)	Convert the following regular expression to NFA with epsilon transitions 011(0+1)*	7	3	1	1,2
b)	What is meant by ambiguity? How we can test the ambiguity of grammar?	7	4	2	1,2
19.	Answer any two of the following:				
a	Find a grammar in CNF equivalent to the grammar $S \rightarrow bA aB, A \rightarrow bAA aS a, B \rightarrow aBB bS b$	7	4	3	1,2
b	Explain the Halting problem of a Turing machine.	7	2	4	1
c	Explain the basic concept of the Universal Turing Machine.	7	2	5	1

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	55
2	Knowledge on application and analysis (Level-3 & 4)	45
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	0
